skip to main content


Search for: All records

Creators/Authors contains: "Ferguson, Andrew J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. High efficiency organic photovoltaic devices have relied on the development of new donor and acceptor materials to optimize opto-electronic properties, promote free carrier generation, and suppress recombination losses. With single junction efficiencies exceeding 15%, materials development must now target long-term stability. This work focuses on the photobleaching dynamics and degradation chemistries of a class of small molecule donors inspired by benzodithiophene terthiophene cores (BDT-3T) with rhodanine endcaps, which have demonstrated 9% efficiency in single junction devices and >11% in ternary cells. Density functional theory was used to design three additional molecules with similar synthetic pathways and opto-electronic properties by simply changing the electron accepting endcap to benzothiazoleacetonitrile, pyrazolone, or barbituric acid functional groups. This new class of semiconductors with equivalent redox properties enables systematic investigation into photobleaching dynamics under white light illumination in air. Degradation chemistries are assessed via unique spectroscopic signatures for the BDT-3T cores and the endcaps using photoelectron spectroscopies. We show that the pyrazolone undergoes significant degradation due to ring opening, resulting in complete bleaching of the chromophore. The barbituric and rhodanine endcap molecules have moderate stability, while the benzothiazoleacetonitrile group produces the most stable chromophore despite undergoing some oxidative degradation. Collectively, our results suggest the following: (i) degradation is not just dependent on redox properties; (ii) core group stability is not independent of the endcap choice; and (iii) future design of high efficiency materials must consider both photo and chemical stability of the molecule as a whole, not just individual donor or acceptor building blocks. 
    more » « less
  3. Abstract

    Heat transport in nanoscale carbon materials such as carbon nanotubes and graphene is normally dominated by phonons. Here, measurements of in‐plane thermal conductivity, electrical conductivity, and thermopower are presented from 77–350 K on two films with thickness <100 nm formed from semiconducting single‐walled carbon nanotubes. These measurements are made with silicon–nitride membrane thermal isolation platforms. The two films, formed from disordered networks of tubes with differing tube and bundle size, have very different thermal conductivity. One film matches a simple model of heat conduction assuming constant phonon velocity and mean free path, and 3D Debye heat capacity with a Debye temperature of 770 K. The second film shows a more complicated temperature dependence, with a dramatic drop in a relatively narrow window near 200 K where phonon contributions to thermal conductivity essentially vanish. This causes a corresponding large increase in thermoelectric figure‐of‐merit at the same temperature. A better understanding of this behavior can allow significant improvement in thermoelectric efficiency of these low‐cost earth‐abundant, organic electronic materials. Heat and charge conductivity near room temperature is also presented as a function of doping, which provides further information on the interaction of dopant molecules and phonon transport in disordered nanotube films.

     
    more » « less